Cuspidal class number formula for the modular curves X1(p)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kuroda’s Class Number Formula

Let k be a number field and K/k a V4-extension, i.e., a normal extension with Gal(K/k) = V4, where V4 is Klein’s four-group. K/k has three intermediate fields, say k1, k2, and k3. We will use the symbol N i (resp. Ni) to denote the norm of K/ki (resp. ki/k), and by a widespread abuse of notation we will apply N i and Ni not only to numbers, but also to ideals and ideal classes. The unit groups ...

متن کامل

Modular Units and Cuspidal Divisor Class Groups of X1(n)

Abstract. In this article, we consider the group F∞ 1 (N) of modular units on X1(N) that have divisors supported on the cusps lying over∞ of X0(N), called the ∞-cusps. For each positive integer N , we will give an explicit basis for the group F∞ 1 (N). This enables us to compute the group structure of the rational torsion subgroup C∞ 1 (N) of the Jacobian J1(N) of X1(N) generated by the differe...

متن کامل

Rational Cuspidal Curves

It is the product of my playing with beautiful geometric objects called rational cuspidal curves over the past two years. I would like to thank everyone who has contributed to this thesis. I owe so much to everyone who has ever taught me mathematics. Thank you for inspiring me and for providing me with the skills necessary to complete this thesis. To my friends and fellow students at Abel, than...

متن کامل

Genus Formula for Modular Curves of D-elliptic Sheaves

We prove a genus formula for modular curves of D-elliptic sheaves. We use this formula to show that the reductions of modular curves of D-elliptic sheaves attain the Drinfeld-Vladut bound as the degree of the discriminant of D tends to infinity.

متن کامل

Special Cases of the Class Number Formula

Proof. Using that (Z/p)× is a cyclic group of order p − 1 (i.e. the existence of primitive roots), we see that there is a square root of −1 (that is, a non-trivial fourth root of 1) in (Z/p)× if and only if p ≡ 1 mod 4. Suppose now that p ≡ −1 mod 4, and suppose that α and β are two elements of Z[i] such that p|αβ. Then p = N(p)|N(α)N(β), and so (after relabelling if necessary) we may assume th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1992

ISSN: 0021-8693

DOI: 10.1016/0021-8693(92)90119-7